In information technology, a backup, or the process of backing up, refers to the copying and archiving of computer data so it may be used to restore the original after a data loss event. The verb form is to back up in two words, whereas the noun is backup.
Backups have two distinct purposes. The primary purpose is to recover data after its loss, be it by data deletion or corruption. Data loss can be a common experience of computer users; a 2008 survey found that 66% of respondents had lost files on their home PC. The secondary purpose of backups is to recover data from an earlier time, according to a user-defined data retention policy, typically configured within a backup application for how long copies of data are required. Though backups represent a simple form of disaster recovery, and should be part of any disaster recovery plan, backups by themselves should not be considered a complete disaster recovery plan. One reason for this is that not all backup systems are able to reconstitute a computer system or other complex configuration such as a computer cluster, active directory server, or database server by simply restoring data from a backup.
Since a backup system contains at least one copy of all data considered worth saving, the data storage requirements can be significant. Organizing this storage space and managing the backup process can be a complicated undertaking. A data repository model may be used to provide structure to the storage. Nowadays, there are many different types of data storage devices that are useful for making backups. There are also many different ways in which these devices can be arranged to provide geographic redundancy, data security, and portability.
Before data are sent to their storage locations, they are selected, extracted, and manipulated. Many different techniques have been developed to optimize the backup procedure. These include optimizations for dealing with open files and live data sources as well as compression, encryption, and de-duplication, among others. Every backup scheme should include dry runs that validate the reliability of the data being backed up. It is important to recognize the limitations and human factors involved in any backup scheme.
Maps, Directions, and Place Reviews
Storage, the base of a backup system
Data repository models
Any backup strategy starts with a concept of a data repository. The backup data needs to be stored, and probably should be organized to a degree. The organisation could be as simple as a sheet of paper with a list of all backup media (CDs etc.) and the dates they were produced. A more sophisticated setup could include a computerized index, catalog, or relational database. Different approaches have different advantages. Part of the model is the backup rotation scheme.
Storage media
Regardless of the repository model that is used, the data has to be stored on some data storage medium.
Managing the data repository
Regardless of the data repository model, or data storage media used for backups, a balance needs to be struck between accessibility, security and cost. These media management methods are not mutually exclusive and are frequently combined to meet the user's needs. Using on-line disks for staging data before it is sent to a near-line tape library is a common example.
How Do You Backup Your Iphone 4 Video
Selection and extraction of data
A successful backup job starts with selecting and extracting coherent units of data. Most data on modern computer systems is stored in discrete units, known as files. These files are organized into filesystems. Files that are actively being updated can be thought of as "live" and present a challenge to back up. It is also useful to save metadata that describes the computer or the filesystem being backed up.
Deciding what to back up at any given time is a harder process than it seems. By backing up too much redundant data, the data repository will fill up too quickly. Backing up an insufficient amount of data can eventually lead to the loss of critical information.
Files
Filesystems
Live data
If a computer system is in use while it is being backed up, the possibility of files being open for reading or writing is real. If a file is open, the contents on disk may not correctly represent what the owner of the file intends. This is especially true for database files of all kinds. The term fuzzy backup can be used to describe a backup of live data that looks like it ran correctly, but does not represent the state of the data at any single point in time. This is because the data being backed up changed in the period of time between when the backup started and when it finished. For databases in particular, fuzzy backups are worthless.
Metadata
Not all information stored on the computer is stored in files. Accurately recovering a complete system from scratch requires keeping track of this non-file data too.
Manipulation of data and dataset optimization
It is frequently useful or required to manipulate the data being backed up to optimize the backup process. These manipulations can provide many benefits including improved backup speed, restore speed, data security, media usage and/or reduced bandwidth requirements.
Managing the backup process
As long as new data are being created and changes are being made, backups will need to be performed at frequent intervals. Individuals and organizations with anything from one computer to thousands of computer systems all require protection of data. The scales may be very different, but the objectives and limitations are essentially the same. Those who perform backups need to know how successful the backups are, regardless of scale.
Objectives
Limitations
An effective backup scheme will take into consideration the limitations of the situation.
Implementation
Meeting the defined objectives in the face of the above limitations can be a difficult task. The tools and concepts below can make that task more achievable.
Measuring the process
To ensure that the backup scheme is working as expected, key factors should be monitored and historical data maintained.
Source of the article : Wikipedia
EmoticonEmoticon